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Abstract
The development of a microprocessor requires many efforts in order to be able to successfully
tape out a bug free design. Due to the high costs and waiting times of fabrication, the option
of doing multiple iterations of a design is not usually available. That is why companies have
big verification teams responsible of the good functional behaviour of the design logic. They
provide reliable verification environments to test all the different scenarios the design under
test will be exposed, and help the design team debug the issues encountered. Techniques
like Universal Verification Methodology, coverage, assertions, test generation are de facto
standard in verification.

This thesis presents the contributions made in the environment developed for the verification
of the memory pipeline of a RISC-V core. A UVM testbench, along with a golden model, has
been developed which is able to functionally verify the behaviour of the memory pipeline. To
generate tests to stress the different functionalities of the memory pipeline, a test generation
flow based on a genetic algorithm has been set up. With it, several issues on the memory
pipeline logic have been found, and helped improving the RTL logic of the design.
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Chapter 1

Introduction

Developing hardware is a very complex process that involves numerous of highly trained
teams with different specialties. On top of that, the fabrication process in order to get the
physical chip is very expensive. That is why, once the design is sent to the fab, there has to
be a highly confidence that it works accordingly to its specification. The team responsible
of this verification is the Design Verification team.

In the last years, and the ones to come, Moore’s law will help less and less in the improve-
ments of microprocessors and every Application-Specific Integrated Circuit (ASIC). Since
the demands of faster, smaller and efficient designs by the market won’t stop, hardware ar-
chitects need to add more complexity to their designs in order to make them better on each
generation. This increment of complexity, translates into more risk of errors in the design,
which makes the verification process even more important.

Figure 1.1: Number of transistor per millimetre square over the years.
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1.1 Motivation

Although the verification process of any digital design is crucial for a successful tape-out,
there are very few, to almost none university level subjects about the topic. Computer Sci-
ence degrees and masters are usually focused on architecture design but they leave no place
for one of the most important and extensive tasks in ASIC development, design verification.

Moreover, little is the number of companies that disclose their verification process and tech-
niques. Comprehensive because the enormous effort and money they invest in the task, but
makes it even harder for inexperienced teams to familiarize with all of the new concepts of
the verification process. Thanks to the irruption of RISC-V to the microprocessor world,
different open-source organizations[4][5] have started their own development of new RISC-
V cores and documented some aspects of the verification process[6]. These resources are
of great help for newcomer verification engineers as they serve as a non trivial verification
project examples.

One of the main purposes of this thesis, is to document and explain all the verification
process along with the important decisions that were taken in order to successfully verify
the memory pipeline of a microprocessor. And add a little bit of public knowledge about
design verification.

1.2 Contributions

This thesis was done in the context of the Verification Team at Semidynamics, and it presents
some of the work performed in the verification process of the memory pipeline of Avispado[1],
one of the in-order company cores.

The main objective of this project was to develop a testbench for the memory pipeline that
enables a coverage directed test generation strategy in order to stress the design. The key
contributions to achieve this objective have been:

� Memory pipeline testbench: A testbench based on the UVM [2] methodology has
been developed. A custom language has also been developed in order to control the
actions of the testbench. This has helped to speed up the creation of tests and to be
able to generate test cases with external tools.

� Coverage directed genetic test generator: A genetic algorithm has been used to
develop the test generation flow. It makes use of the test coverage to evolve the quality
of the generated tests and eventually, discover bugs in the design.

Figure 1.2 summarizes the contributions presented in this thesis. It presents the final verifi-
cation environment developed for the memory pipeline, where the generated tests from the
genetic algorithm are run in the UVM testbench and give feedback to the test generator so
it can improve the quality of the tests. Thanks to this environment, 8 functional bugs and
4 performance bugs have been discovered in the memory pipeline logic.

7



Figure 1.2: Schematic of the verification environment

1.3 Thesis structure

The thesis will follow the following structure:

� Chapter 2 covers the essential aspects required to understand the project. It dives into
the Design Verification world, describes all the key components of the UVM framework,
and explain the coverage directed test generation methodology.

� Chapter 3 provides an overview of the Memory Pipeline, the Design Under Test (DUT),
and all of the modules that interacts with, as well as how they have been simulated
in the verification environment. The implementation of the verification environment,
will be also discussed in this chapter.

� Chapter 4 does an in-depth explanation of the new language created with all the
implemented instructions and features of it. It also describes how it has been integrated
with the testbench.

� Chapter 5 describes the coverage directed genetic test generation approach, the cover-
age results obtained from the tests generated by the algorithm and the bugs found in
the design.

� Chapter 6 summarizes the project by describing the conclusions of the thesis and the
possible future work.
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Chapter 2

Background and Related Work

This chapter introduces the reader into the necessary topics to fully understand the thesis.

Section 2.1 presents the Design Verification topic and its importance in the ASIC and Digital
Design worlds. In Section 2.2 the UVM framework is presented and explained along with
all of its components.

2.1 Design Verification

The verification of a digital design consist in the creation of different software elements which
helps checking that the behavior of the Design Under Test (DUT) is the one stated on its
documentation. The verification process, spans during almost all of the development steps.
Since each of this steps produces some modification or transformation e. g. synthesizing the
RTL to a netlist, it needs to be checked that the DUT keeps behaving as specified, and no
error has been introduced.

At the beginning of a project, once the design architecture documentation has been written,
the verification process starts. The verification team, will elaborate a document called Veri-
fication Plan, where all the different aspects of the verification will be discussed, annotated
and distributed to the different verification teams. The plan will include:

� Assertions: Properties that are checked during simulation and are responsible of
ensuring that the axioms of the design hold, and so the design works by its specification.
One example of an assertion would be to check that in a queue design, data is not
pushed when the queue is full. The SystemVerilog code would look like this:

write_on_full : assert property (

(posedge clk_i) disable iff (!rst_ni) full |-> !push_i)

else $error("ERROR: Trying to push new data although the FIFO is full"

);

The |− > is the implication operator in SystemVerilog.
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� Assumptions: Properties that are used to specify which are the valid inputs of the
DUT. They are in special use by Formal Verification1 tools. An assumption example
would be to tell the tool that and input id is not greater that a certain value.

id_constraint : assume property ((posedge clk_i or negedge clk_i)

sb_id_i < STORE_BUFFER_DEPTH_TOTAL);

);

� Coverage: Metrics that are collected by the simulator and are of use of the Verification
Team, in order to know which areas of the design have been stimulated and which ones
have not yet been reached. Toggle, Branch, Condition, Expression and FSM coverage
are the types of coverage collected automatically by the simulation tools.

� Functional Coverage: This coverage is manually defined in the Verification Plan,
and covers all the scenarios, input sequences, corner cases, etc. That are crucial for
the design and need to be tested.

� Testbench: The different testbenchs that will be build to verify the DUT. Depending
on the resources, the Verification Team will adopt a Block Level verification strategy,
where each one of the modules that conforms the DUT will be tested on its own. Or a
Top Level verification strategy where the verification will use the highest possible level
to verify the DUT.

The Verification Plan might also include the kinds of tests to be perform post synthesis,
using the netlist of the design in a Gate Level Simulation GLS fashion. GLS will check that
the synthesis has been performed correctly, the timing requirements of the cells are met,
there are no unconnected paths, X propagation, etc. Or the tests to be done once the chip
is back from the fab, in order to know that all connections of the chip are alive and there
have not been errors during its manufacturing process.

2.2 Universal Verification Methodology (UVM)

Universal Verification Methodology or UVM, is the standard verification framework and
methodology in the industry, as it enables faster development and reusability of the code.
UVM was created in 2009 by Accellera, a standards organization in the Electronic Design
Automation (EDA) industry, and standardized in 2011 in the IEEE 1800.2. Before UVM
there were different verification libraries: Open Verification Methodology (OVM), eReuse
Methodology (eRM), etc. Which were developed by EDA vendors, but only supported by
the company which had developed the library.

UVM has been developed using the SystemVerilog language and it makes use of its character-
istics to build its software stack. Recently there has been a port of UVM to SystemC/C++,
but it lacks some of its features.

1Verification technique that makes use of mathematical methods in order to proof the correctness of a
design. It makes use of the assertions and assumptions declared in order to know the valid inputs and
outputs of the DUT
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Figure 2.1: UVM testbench block diagram

The idea behind UVM is to provide a groups of classes and methods that serve as a structure
for the testbench. Later the verification engineer will extend this classes to fit them into the
needs of the verification project.

2.2.1 UVM structure

A typical UVM testbench starts with a module, usually called tb or tb top where the DUT
is instantiated, and it will serve as the top hierarchy file of the testbench. In this file, there
will also be the connections between the DUT interface and the possible multiple virtual
interfaces of the testbench. Once everything has been setup, a call to the method run test
will start the UVM test.

2.2.2 uvm test

The uvm test will be the first UVM class created in the testbench. It is responsible to
instantiate the environment, and set it up according to the needs of the specific test via the
configurations object. Once this configuration has been done and the environment is ready,
it selects the specific sequences to be run for that test and starts them.

2.2.3 uvm environment

The UVM environment, extended from the uvm env class, acts as a harness of the different
agents of the testbench and its shared components like the scoreboard, functional coverage
collector, specific checkers, etc.
It will also be responsible to set up the default configurations or pass through the test
configuration to the different agents and do the proper connections between those and the
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different components of the environment. One typical connection would be from the agent’s
monitors to the scoreboard, so it can receive the observations in the interfaces and check
that they are correct.

2.2.4 uvm agent

It is the last wrapper class down the hierarchy. The uvm agent contains all the functionality,
and configuration, to drive and monitor an specific interface of the DUT. An agent can be
configured as active, where all elements of it are enabled. Or passive where only the monitor
components are activated.
An UVM agent is composed by a driver, a monitor and a sequencer.

2.2.5 uvm driver

The driver is an active entity that has the knowledge on how to drive the signals of a
particular interface of the design, it implements the interface protocol. For example it could
be an AXI, APB, CHI, etc. or a custom protocol.
The driver will obtain the data to drive the interface, as transactional items which comes
from the sequencer it is connected to. If it is in the needs of the testbench, the driver is also
able to send the response, of the driven item, to the sequence using the response port of the
sequencer.

Figure 2.2: Connections between uvm driver and uvm sequencer

2.2.6 uvm sequencer

The sequencer is a UVM component that serves the transactional items from the sequences
to the driver. From one side it is connected to the sequence object, and in to other side it
has the connection to the agent driver. In the case where there are more than one sequence,
the sequencer is used as an arbiter between those sequences. It can be configured so each
sequence has its own level of priority.
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Figure 2.3: UVM sequencer connections [11]

2.2.7 uvm sequence

A UVM sequence contains the information, usually in form of constraints, about the kind
of data item it needs to be send to the driver in order to provoke a concrete stimulus in
the DUT. In a UVM test we usually combine more than one sequence, in order to create
interesting scenarios for the DUT.

2.2.8 uvm monitor

The job of a UVM monitor is to observe the signal activity from the design interface. Capture
it into transactional items which later can be send to the other UVM components. Usually
the scoreboard or reactive sequence,are the most common cases.

2.2.9 uvm scoreboard

The scoreboard is a verification component which contains checkers or a golden model in-
stance of the DUT. It receives transactional items from the different monitors and drivers
of the testbench and verifies that the design is working as expected, by comparing the re-
sults obtained from the reference models and the items received from the different UVM
components.

The golden model could either be a pure functional model, which only produces the expected
result of an operation, or a cycle accurate model of the DUT, where each cycle of the
operation can be checked and not just the output result. In the scope of this project, a
functional model of the DUT was created following the specifications of the design.
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2.3 Coverage Directed Test Generation

Test generation is a very important subject in the verification process, pre-silicon and post-
silicon, of an ASIC design. Usually a set of constraints is used to guide the test generation
towards certain verification scenarios. For each of the test created, coverage is collected to
measure the effects of the different tests. Then the results are evaluated and the constraints
are modified in the hope that the coverage is increased in the next simulation round. This
approach is known as Coverage Directed test Generation (CDG). In order to be able to keep
improving the quality of the tests, the process of analyzing the coverage results and set up
the new constraints needs to be automated. For simple designs, where the coverage space
is not too large, a random algorithm could be enough. But for the DUT presented in this
theses, and for designs with a little bit of complexity, an algorithm, usually from the area
of Machine Learning (ML), is needed in order to keep evolving the quality of the tests, and
finally close coverage. Examples of how these algorithms have been used are:

� Bayesian Networks[9] where it tries to find a relationship between the generation
directives and the coverage archived by training a pre-constructed Direct Acyclic Graph
(DAG). And once trained, apply inference in order to hit the remaining coverage tasks.
It requires an initial engineering effort and expertise in order to construct the graph
but once constructed they succeed in closing the coverage effectively and efficiently.

� Genetic Programming[3] where the tests are generated in accordance to an instruc-
tion library and are evolved using an evolutionary algorithm. This technique was the
one decided to integrate for the test generator of this project. Chapter 5 gives an
insight of the genetic algorithm used and which have been the results obtained.

� Markov Model[12], this approach makes use of a random test generation which is
directed by an adaptive Markov Model (MM) created by the user. The goal is to
adjust the weights of the links between the nodes of the MM graph accordingly to the
coverage results of the DUT.

2.4 Related work

Regarding design verification, with the rise of RISC-V and its open-source nature, different
organizations have started publishing their efforts on design verification of their projects.
This documents are very valuable since they are the few available documents explaining
the insights of a verification process in a project of industrial grade. The institutions that
have the best documentation from a verification point of view are OpenHardware[4] and
lowRISC[5].

Both organizations have developed different open-source hardware projects, RISC-V cores
like Ibex[7] by lowRISC or Ariane[8] by OpenHardware. Or a root-of-trust project like the
OpenTitan[10] where a massive effort in terms of documentation have been done. In all
of this projects there are examples on how to structure a test and coverage plan, different
approaches on how to verify the design, different simulation environments, etc. From this
projects it is clear that there is not an unique approach to verification, but there are common
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techniques like UVM, assertions, coverage or a Continuous Integration (CI) system. All of
these methodologies and concepts have been taken in mind when designing and building the
testbench discussed in this thesis.
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Chapter 3

Memory Pipeline Architecture and
Verification Infrastructure

This chapter will take a closer look to the background needed to understand the verification
environment that has been built. Starting by doing an overview of the design under test,
the memory pipeline, in Section 3.1. Section 3.2 will describe the RTL modules that are
connected to the memory pipeline and interact with it. Finally Section 3.3 will have an
in-depth description of the UVM testbench.

3.1 Memory Pipeline

The memory pipeline that has been verified in this project is the one integrated in the
Semidynamics company cores Avispado and Atrevido. It responsible of executing the scalar
and vector loads and stores as well as Atomic Memory Operations (AMOs), while maintaining
the coherence. Inside the core hierarchy, the memory pipeline receives the name of Load Store
Unit (LSU).

Figure 3.1: Block diagram of the memory pipeline
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The load store unit is composed by a pipelined design of multiple stages. It is able to work
with both virtual and physical addresses, supports unaligned memory accesses and different
memory regions, with their own characteristics, for example, whether the region is cacheable
or which kind of interface protocol, AXI or CHI, is needed to reach it. As mentioned above,
the LSU supports coherent memory accesses over the CHI interface protocol[13]. The MESI
protocol is the coherence mechanism implemented in the design, that is, a line can be in the
following states:

� Invalid: The line is not valid, the data it contains can not be used.

� Shared: The line is valid and more than one core has it on the same state. The core
can read from it, but if it needs to write into the line, it needs to notify the other cores
of the write operation so they invalidate its line.

� Exclusive: The line is valid and it is the only core that has it. If it needs to do a
write it doesn’t need to notify the other processors.

� Modified: The line is valid, and has been modified by a write. In case other processors
request the line or it needs to be evicted, the core will be the one responsible of serving
the line and downgrading its state to either Shared or Invalid.

In order to interface with cachable memory regions, the LSU uses a coherence bus which
implements the CHI specification. This interface is used to send and receive new cache
lines, evict modified data and receive snoops in order to maintain data coherence. The CHI
interface is divided into the different channels:

� Request (REQ): This channel is used to request new lines from the L2 and coherence
state updates for an already present line in the L1.

� Fill (FILL): This channel is used to receive the requested data from the L2.

� Evict (EVC): This channel is used to send the evicted data from the L1 to the L2.

� Snoop request (SNPREQ): The snoops sent by the L2 in order to maintain memory
coherence between the cores of the SoC, are received through this channel.

� Snoop response (SNPRSP): This channel is used to send back the response of the
received snoops. If it is required by the type of the snoop received, it will contain as
well the corresponding data.

In order to increase the stores performance, the memory pipeline has a Store Buffer with
it the memory pipeline is able to complete one store per cycle without affecting the design
frequency.

Thanks to the MSHR structure, the memory pipeline is able to support a large number of
outstanding misses. This feature is very important for the vector memory operations, since
a single vector ISA instruction can produce multiple line misses.
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3.2 Modules in the Memory pipeline border

The load store unit is a crucial part of most microprocessors since it has most of the logic
to communicate with the components outside the core. For this reason, there are multiple
modules that are connected to the memory pipeline. In case of Avispado core, the modules
that are connected to the LSU are:

� Memory Issue Queue (MIQ): It contains the instructions that will be executed next
in the LSU, and the logic to properly serve instructions which the LSU has rearmed,
and need to be issued again. It is also in charge of serving the store data to the SVB
when a store has been issued and the data is ready.

� Vector Memory Micro Op Generator (VMUG): For the case of vector loads and
stores, the single RISC-V instruction, is to complex for the LSU to execute. Keep in
mind that RISC-V defines three major types of vector memory operations:

– Unit stride: where data is fetched contiguously from an initial address.

– Stride: where data is fetched from an initial address and a fixed stride is added
to fetch the following elements.

– Indexed : where addresses are formed from an initial address plus an index that
comes from the elements of the vector register.

In order to reduce all the logic of address creation, and to be able to efficiently support
cache misses, the VMUG module will split the vector memory operation and create,
for each element it has to fetch, a memory operation similar to a scalar load or store.
This new operation will be inserted into the MIQ to be issued to the LSU.

� Data Page Table Walker (DPTW): When a memory instruction provokes a miss
on the TLB, the DPTW will be in charge of correctly fetching the address translation
needed from the page table by issuing loads to the LSU. Getting the cache lines that
has the translation information, and inserting it to the data TLB.

� Instruction Page Table Walker (IPTW): It does the same job as the DPTW but
for the instructions TLB.

� Graduation List (GL): Once the LSU has finished the execution of a memory oper-
ation, it will communicate it to the Graduation List in order to mark that instruction
as completed.

When the LSU needs to access the next level of memory, in this case the L2 Cache, it does via
one of the two supported protocols, CHI or AXI, depending the memory region requested.
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3.3 UVM Testbench

The testbench that has been build in order to be able to verify the memory pipeline presented
in the previous section, has been developed using the UVM methodology. Specifically it
has used the UVM-SystemC port in order to be able to simulate the whole project using
Verilator. Verilator is an opensource SystemVerilog to C++/SystemC translator, but it does
not support all the SystemVerilog language features. That is why it is needed the use of the
UVM-SystemC port which allows to build the UVM testbench in C++/SystemC. Verilator
is a perfect tool for running a high number of simulations in parallel since it doesn’t require
of any license, making the limitation on the number of cores available and not the number
of licenses the company can buy for a proprietary simulation tool.

To the final architecture of the DUT, has also been included the DPTW and VMUG modules.
This has helped to reduce a great number of lines of the testbench code by not replicating
a working and verified logic again, without compromising any testbench feature, nor the
verification of the memory pipeline.

The LSU interface is very wide due to the number of different modules it interacts with. In
order to organize the logic of the different subinterfaces, a UVM agent, per interface, has been
created which is in charge of correctly driving and monitoring its corresponding subinterface.
In Figure 3.2 it can be observed the different identified sub-interfaces of the LSU, and how
they have been grouped and connected into the different agents of the testbench.

Figure 3.2: Testbench agents and the subinterfaces they are connected to

The MIQ agent is in charge of the correct issuing and completion of the memory operations
issued to the LSU. All transactions related to memory operations, which have been produced
by the test sequences, are collected by the agent driver. This component, will drive the
corresponding LSU ports in order to correctly insert the instruction to the memory pipeline.
On top of issuing instructions the miq driver needs to correctly control its internal structures
to be able to re-issue instructions that were already issued, in the same order. This re-issue
could happen either because the LSU could not process the instruction at the time it was
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issued, or because a previous instruction provoked an exception and the pipeline was flushed.
The miq driver is also in control of the store commit signal and the SVB interface, it keeps
track of the register dependencies and send the store data when it is available. As mentioned
above, in order to reduce the logic in the miq driver, the VMUG module has been placed
into the DUT. This way, instead of generating the micro operations in the driver, it interacts
with the VMUG in order to be able to insert vector memory operations in the LSU.

Once an operation completes, the monitor of the MIQ agent, which is observing the com-
pletion interface, will capture the values of such interface and create a transaction packet
which will be send to the scoreboard in order to verify that the instruction has been executed
correctly. One important check that has the miq monitor is to detect livelock situations,
where the same instruction has been issued and re-issued a significant number of times but
has not progressed in the LSU pipeline.

The other important agent in the testbench is the CHI agent, which is in charge of responding
back to the different CHI requests from the LSU. To do so, the chi monitor continuously
observes the output ports of the CHI interface. When a petition from the LSU is captured, it
is send to the chi sequence. This sequence, analyzes the received transaction and generates a
response sequence that is then sent to the chi driver. The driver will send the response back
to the LSU using the corresponding CHI subinterface. In the Figure 3.3 it can be observed
the different parts of this process.

Figure 3.3: Interactions of a LSU CHI request with testbench agent
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The CHI agent is also responsible to generate the snoop transactions the test has requested.
This helps to simulate a multicore environment where other cores are also interacting with
the shared L2 cache and request or send data to it. For example when requesting a line in
order to read from it, a snoop of type SnpShared will be issued to the core that has the line
either in exclusive or modified state. To invalidate a line, the snoop types that can be used
are SnpCleanInvalid to obtain any dirty copy of the line, or SnpMakeInvalied so any dirty
copy of the line is dropped.

The IPTW agent is in charge of the LSU interface that is connected to the core’s frontend,
and mimics the PTW requests it issues. Its driver controls the interface, sending the requests
provided by the sequence and the monitor notifies the scoreboard when a new request has
been issued and completed.

In order to test a reset sequence, the reset agent monitors the pipeline of the DUT. When
it detects a window to insert a reset, blocks the other active agents so they do not send any
requests, drains the L1, so modified lines are not erased, and resets the state of the LSU by
asserting the reset signal of the module.

The last active agent in the testbench is the config agent. This agent controls the configu-
ration ports of the LSU, whether virtual memory is activated, which level of permissions is
active, etc. The driver will receive the configuration changes from the sequences, and will
hold the same status until a new update is generated.

Finally the coverage agent is an only passive agent. Its job is to monitor different signals of
the LSU interfaces as well as inner signals of the design, and collect coverage metrics from
the values observed. This information is of great value, since it indicates which parts of the
LSU is the test stressing and more importantly, which signals of the design the test is not
being able to stimulate.

Figure 3.4: Hierchy overview of the different UVM components of the testbench
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As in any other UVM testbench, all of this agents have been instantiated in an environment
where all the connections between these different agents and the scoreboard have been done.
The testbench scoreboard is in charge of checking that the memory pipeline is executing
correctly the different instructions issued. In order to do so, it collects all the information
captured by the different monitors and compares the results obtained with a golden model,
which mimics the functional behaviour of the LSU and it has been written in C++. When
it detects a mismatch between the values observed and the values generated by the golden
model, it raises an error which stops the simulation and reports the information about it.

To organize and generate sequences a virtual sequencer and sequence has been used. Both
are in charge of controlling the different sequences of the test. The following Chapter 4 gives
a detail view of the virtual sequence.
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Chapter 4

LSU language and virtual sequence

To generate the stimuli for the DUT in a UVM testbench, sequences that create random
transactional items for the drivers are used. In the memory pipeline, since it can execute
different kinds of operations issued in different subinterfaces, another strategy has been
adopted. In order to facilitate the creation of new sequences, the strategy that was decided
to be adopted was to create a language which the testbench would interpret, translate it
to sequences and execute it via its agents. This way, the creation of new tests has been
simplified without loosing any feature, a developer do not need to understand how the UVM
sequences work in order to create an specific test. Also the automation of creating new
tests can be handled to another programs, since they only have to generate an ASCII file
compliant with the rules of this new language. Section 5.1 gives more details on how this
test generation automation has been performed.

This chapter has been organized in the following way, Section 4.1 will explain the character-
istics of the language used to create the test sequences and the interpreter to interpret them.
Section 4.2 will describe how sequences are created from the interpreted instructions.

4.1 LSU language

The language created for the testbench receives the name of the DUT, lsu, and all instruction
files will have the .lsu extension. The main purpose of the language is to be able to easily
create different kinds of sequences to stimulate the DUT, without having to configure many
parts of the testbench. The language has the following types of instructions:

� Load: When translated to a sequence it generates a load or vector load, with the
specified size to the selected address, that is issued via the MIQ agent.

load.〈size〉 dest reg, 〈address〉
load u.〈size〉 dest reg, 〈address〉

v load.〈size〉 dest reg, 〈address〉, vl
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When the load u instruction is used, the loaded value is treated as an unsigned value.
For the vector loads (v load), the last parameter indicates the number of elements that
are going to be fetched.

� Store: When translated to a sequence it generates a store or vector store, with the
specified size to the selected address, that is issued via the MIQ agent.

store.〈size〉 src reg, 〈address〉
v store.〈size〉 src reg, 〈address〉, vl

� Snoop: When translated to a sequence it generates a snoop request that will reach
the LSU by the SNPREQ CHI channel.

snoop.w 〈snp type〉, 〈address〉
snoop.nw 〈snp type〉, 〈address〉

The snoop.w instruction will wait until all older instruction of the test to be completed
before being issued by the CHI agent. The snoop.nw will not wait for any instruction
to be completed, and if the channel is ready it will be issued as soon at it arrives to
the CHI driver.

� Control: In order to control the testbench and the execution of the test, the language
supports the following instructions:

– block : It will block the issue of new instruction until all older instructions have
completed.

– enable vm: It will enable the virtual memory in the memory pipeline.

– disable vm: It will disable the virtual memory in the memory pipeline.

– set chi wait It will change the random distribution of the number of cycles a CHI
transaction has to wait to be issued to the LSU. The testbench supports four
distribution types: always zero, small uniform, large uniform and binomial.

– reset : It will set up a reset instruction in the reset agent.

– flush: It will create a flush sequence that will flush the memory pipeline as well
as its internal structures.

� Atomic: When translated to a sequence, it generates an atomic instruction with the
specified size to the selected address, that is issued via the MIQ agent.

lr.〈size〉 dest reg, 〈address〉
sc.〈size〉 dest reg, src reg, 〈address〉

amo.〈size〉 〈amo type〉, dest reg, src reg, 〈address〉

The lr instruction is the same as the one in the RISC-V ISA[14]. It will load a value
to the specified register and set to valid the reservation monitor. If any other memory
instruction or snoop to the same line of the lr instruction is issued, the reservation
monitor will be disabled.
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The sc instruction will store the value of the source register to the specified address if
the reservation monitor is valid, else the store won’t success. The result of the outcome
of wether the store has been able to succeed will be indicated in the destination register.
The amo instruction performs an atomic memory operation of the indicated type to
the selected address. The supported operations are: swap, add, and, or, xor, max,
maxu, min and minu.

The supported values for the size parameter are: 8, 16, 32 and 64. It indicates the size in
bits of the values that are going to be loaded or stored. To specify an address it can be use
an hexadecimal value or a reference to another instruction, for example:

lr.32 r1, 0x800000000000

block

snoop.w unique @1

sc.32 r2, r3, @1

In the above code, the address of the two last instruction will be the same as the instruction
they are referencing, the first one.

The lsu files will be lexed and parsed by the testbench interpreted who will generate an array
of instructions that will be consumed by the virtual sequence.
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4.2 Virtual sequence

As it has been discussed along the thesis, the DUT has multiple interfaces and so multiple
agents to control each one of them. That also requires different kinds of sequences to create
the events for each one of the agents drivers. In order to organize all the test sequences
the strategy of a virtual sequence is the most practical one. In a generic UVM view, a
virtual sequence is a container to start multiple sequences on different sequencers in the
environment.

Figure 4.1: Diagram of the virtual sequence and lsu interpreter

In the testbench developed in this thesis, the virtual sequence object has been used to
receive all the instructions parsed from the lsu file. Then after decoding which kind of
instruction is, it creates and configures the specialized sequence that sends the transactional
item containing the action described by the parsed instruction. A virtual sequencer is used
to hold the different references of the agent sequencers. When starting the new configured
sequence, the virtual sequence makes use of these references to pass them to the created
sequence.

The instruction is also sent to the golden model in order to be executed there as well to
produce the expected result, and compare it later on the scoreboard, once the LSU has
finished the execution of the instruction.
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Chapter 5

Coverage directed genetic test
generation

The traditional way to generate sequences is by randomizing, usually with some constraints,
the different possible values of the transactional item. With this method, a coverage around
70-80% can be easily archived, and in order to cover the rest, directed sequences that stim-
ulate specific parts of the design are created. When the complexity of the DUT is not high,
or the number of different input scenarios is relatively low, the constrain-random technique,
to generate input sequences works fairly well. The memory pipeline that has been verified in
this project, has a large number of different interfaces that interact with each other. On top
of that the DUT is able to execute different kinds of operations. Also the execution state
in a given moment is very complex, since there are multiple stages in the pipeline, different
kinds of arrays, a coherent state in the L1, etc. For all of this reasons, when discussing
the testbench architecture, it was very clear that a random approach would not yield great
coverage numbers, and a lot of effort would be needed to create directed sequences to close
coverage.

The strategy decided to implement in order to generate tests for the DUT, has been a
coverage directed test generation based on a genetic algorithm. As explained in Section 2.3,
this strategy makes use of the coverage results of the tests generated in order to improve the
next generations of tests. The genetic algorithm implemented in this solutions is explained in
Section 5.1. The coverage results are presented in Section 5.2. Thanks to this test generator
12 issues have been found in the memory pipeline RTL. Some of these bugs are analyzed in
section 5.3.
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5.1 Genetic algorithm

This approach makes use of a software called Micro GP3 [3] developed by a research team
at University of Torino, for the purpose of automating test generation specifically for micro-
processor design verification.

The Micro GP3, makes use of a genetic algorithm, which is a search heuristic that reflects
the process of natural selection, where the fittest individuals are selected for reproduction
in order to produce offspring of the next generation. With this approach, the program
tries to find, in several iterations, the characteristics needed so the generated tests yields
the maximum coverage. Micro GP3 is configured with an instruction library, that is, the
different kinds of operations, and its configurations, it can use to create the tests. After that,
the program starts with an initial population. Once the tests have been run, and produced
a score, two types of genetic operations are performed on the tests in order to produce the
new generation of tests:

� Crossovers: Where two parts of two different programs are selected and interchanged
between them.

� Mutations: Where parts of the program are added, removed or altered from the
original one.

These new generated tests, are run on the DUT and a score is given to each one of them.
Based on this score, usually extracted from the coverage, the tests that performed better are
selected to be the parents of the new population.

Figure 5.1: Genetic test generation flow

The integration of the Micro GP3 program, to the testbench can be observed in Figure
5.1. The instruction library has been populated with all the memory operations supported
by the testbench and the LSU, then all the tests produced by the genetic algorithm are
run in parallel on the testbench. Of each run, a file in vcd format is generated containing
the waveforms of all of the signals of the DUT. Parsing this file, it is obtained the toggle
coverage of each signal of the design and base on that, a score is computed for each test.
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These scores are then introduced to the genetic algorithm, in order to select the best tests
of this generation as the parent candidates for the next population of tests.

5.2 Coverage results

Automatizing this flow has allowed to stress test the DUT, while upgrading the quality of
the tests. This improvement can be observed in Figure 5.2 where it is plotted the LSU
coverage of the tests generated by the genetic algorithm. In this plot it can be observed
as well the genetic variations the algorithm performs on the tests, when sometimes a test
performs worse than one from the previous generation. When the observation is done with
the accumulated coverage, it can be seen how on each generation there are contributions
to the coverage. This is shown in Figure 5.3 where the coverage of the LSU and different
submodules of it has been plot.

Figure 5.2: Score of the tests generated by the genetic algorithm.

Figure 5.3: Accumulated coverage of each genetic generation
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Some experiments with specific data structures have also been performed. For example Fig-
ure 5.4 shows the occupancy of the store buffer structure, that is, how many store operations
are in-flight in the SB. As it can be observed in the graphic, the occupancy mean across the
different generations improves for the first six generations. By the nature of the genetic al-
gorithm, which relays on doing random changes and swapping parts of the tests, accomplish
a test that is able to full the store buffer, which would be to issue a lot of stores with some
load, is really hard.

Figure 5.4: Store Buffer occupancy along different genetic generations

Thanks to this approach, although it did not excel in some coverage tasks, it did manage
to find several bugs in the design. The following section will discuss the nature of this bugs
and how they have been fixed in the RTL code.
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5.3 Bugs found

By the time this project started the core that integrated the memory pipeline, was already
booting Linux and executing several scalar and vector benchmarks without any errors. Al-
though most of the bugs were already found, some of them were still to be discovered.

To the date this thesis has been written, thanks to the testbench and the genetic algorithm
approach, 12 functional and performance bugs have been found. Out of this 12 issues found,
3 of them have been related with IPTW petitions, 3 bugs about Load Reserve and Store
Conditional interactions, 2 bugs about snoops and store interactions, 1 bug related with
unaligned memory accesses in AXI regions, 1 bug in the MSHR structure, 2 bug related
with vector memory operations and 1 performance issue regarding stores and rearms. The
following sections explain more in depth some of this bugs found.

Functional bug Performance bug
IPTW 2 1
LR/SC 1 2

SNOOPS 2 0
AXI 1 0

Store Buffer 0 1
Vector operations 2 0

MSHR 1 0
Total 8 4

5.3.1 Performance bug: LR monitor is cleared when a read is
performed in the same line

As it has been explained in section 4.1 when a Load Reserve (LR) instruction is executed,
it does two things:

1. It loads the requested value to the destination register.

2. It sets the reservation monitor to valid.

The reservation monitor it stores as well the address of the line in which the LR was obtaining
the data from.

Before fixing this issue, the logic of the LSU was being extra conservative, and was disabling
the LR monitor if a memory operation was begin executed on the same line the last LR got
its data. This behaviour is necessary when executing a store instruction since the line can
potentially change its state. In the case of a load, since the line already has the necessary
read permissions from the previously executed LR instruction, and no state update is needed,
the monitor doesn’t need to be disabled.

In order to solve this performance problem, when executing a load operation whether the
line address matches or not, the LR monitor is not disabled.

An example code that was provoking this performance issue was:
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lr.64 r28, 0x800000000040

load.32 r4, 0x800000000048

sc.32 r4, r10, 0x800000000040

5.3.2 Functional bug: Snoop wrongly invalidates a store and re-
request line

This bug is caused by a store that has missed and is waiting on the store buffer for the
requested line to come from the L2 via the CHI fill channel. During this wait, a snoop
request of type SnpOnce arrives making the LSU logic to wrongly re-request the line.

The SnpOnce snoop type, will request to obtain the latest copy of the cache line, preferably
without changing the state of the cache line at the Snoopee. That means the snoop is a
request for the LSU to return the current value of that line, without changing its state.

In this case, the logic of the LSU was only checking that a snoop entered the pipeline, in
order to invalidate the store and request again the line. For the other supported types of
snoop, this behaviour was okay since they either invalidate or downgrade the state of the
line, but in the case of the SnpOnce, the state of the line is not modified. In order to fix this
an extra comparison with the snoop type was added to the store invalidate logic.

The lsu code that provoked this issue was:

snoop.nw shared 0x8000000569

snoop.nw unique 0x8000000005A9

store.32 r23, 0x8000000005A8

snoop.w once 0x8000000005A8

store.32 f8, 0x8000000569

5.3.3 Functional bug: Store conditional incorrectly executed as
successful

In this case the bug was related with the instruction pair LR and SC and cache line eviction.
The lsu code that provoked this issue was:

lr.32 r1, 0x800000004000

load.32 r1, 0x800000001000

v_store.32 v1, 0x800000002000, 1

sc.32 r1, r0, 0x800000003000

This code sets the reservation monitor to valid in the first instruction, then the two instruc-
tions before the SC will evict the cache line of the LR and replace it with another different
one which will be allocated in the same way. When the SC arrives it will incorrectly succeed
since it will be a hit in the cache, and the cache set and way will be the same ones as the
LR instruction.

To be able to detect this scenario, the reservation monitor will store as well the tag of the
line of the LR instruction that has set it to valid. When the SC is executed, in order to
check if the reservation is valid, it will compare the tags of the reservation monitor and the
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address of the SC. Another fix to this issue would had been to monitor the cache evictions
for the reservation monitor, and invalidate it when the line that is evicted is the same as
reservation is being hold.
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Chapter 6

Conclusions and future work

6.1 Conclusions

This thesis presents the efforts done in order to be able to verify the memory pipeline of a
RISC-V coherent core as a standalone module. In the first chapters, the capabilities of the
design to be verified and the requirements of the testbench are explained. Then a detailed
view of the verification environment and how the modules that interact with the memory
pipeline have been emulated is given. Finally, it is disclosed the test generation methodology
adopted for this project and how it has been integrated with the verification flow.

The project contains most of the important parts of a verification project for RTL. From
defining the necessities of the design under test, building a testbench that serves as envelop
for the RTL logic and allows its simulation as it was integrated in the whole chip design,
providing a reference model of the module in order to continuously check its correct behavior,
and creating a test generation flow that is aware of the quality of the generated tests, and
tries to improve it on each generation.

One of the main goals of the project, was to improve the quality of the RLT logic of the
memory pipeline has been accomplished, since a total of 12 functional and performance bugs
have been found and corrected. Also the coverage numbers obtained indicate that the logic
is in very good shape.

Finally, the contributions of this project will enable the design team to stress and verify
future improvements and modifications of the memory pipeline design much faster, with the
ability to create different scenarios and configurations for the test to execute.

34



6.2 Future work

When verifying digital design, there is always space for improvement and developing a more
complete verification infrastructure. Better coverage, new test sequences, defining new func-
tional coverage points, etc. Moreover, the DUT will be upgrading until the freeze date, and
for futures releases either by adding new functionalities, reducing timing paths or improving
the area. The verification environment must be evolving with those changes as well in order
to keep up with the verification.

On top of the list of future work for this project is the creation of a coverage plan. There
it will be listed all the cases that must need to be tested in the design in order to consider
it in good shape. This will require the creation of more functional coverage points that will
give new objectives for the test generation algorithm.

One verification aspect that would complement this project is the creation of assertions.
In verification, assertions work as in any other programming language. In execution time,
they check that a condition remains true, otherwise they fail. Assertions are a key aspect in
any verification environment since they help to detect bugs, and more importantly indicate
where the bug is located, and which signals are responsible of it. This save a lot of time that
it would have been dedicated to review waves, in order to locate where the bug has been
produced.

This project has focused on the verification of the whole memory pipeline, which is composed
by different modules. Sometimes, a certain logic of the design, needs a specific state, or a
consecutive specific states in order to be reached. When verifying from a top module it is
difficult to archive the necessary conditions, that is why a standalone verification of that
specific module needs to be done. From here there are different verification approaches that
can be taken, either a UVM testbench is build around this specific module or a formal
verification approach is taken. Using formal, there is no need to build a complete testbench
for the module, and only instrumenting the code with assumptions and assertions is required.
With them the formal tool is able to verify that the logic of the design, behaves as the
assertions state.

Finally having another type of algorithm for the coverage directed test generator would
be an important contribution for the project, firstly because generated tests would not be
biased by the genetic algorithm, and other kinds of tests would be created. Secondly an
algorithm that is able to work with specific tasks would help to complete the coverage
gaps, the genetic algorithm have. A good candidate for it would be an algorithm based on
Reinforcement Learning (RL). RL is a machine learning method based on rewarding desired
behaviors and punishing undesired ones. With this approach, an RL agent is able to interpret
its environment, the DUT, and take actions by learning through trial and error.
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